
Debugging under Linux � guided gdb tour

Jan Otte

2007

Where oh where is my main() frame?

(gdb) break free

Contents

1 Several introduction words (could be skipped) 2

2 License 2

3 Preparations 2
3.0.1 Now really the instructions . 2

4 Failure number 0 3
4.0.2 First run � learning to read gdb output 3
4.0.3 Backtrace . 5
4.0.4 Debugging information � how to get them in 5
4.0.5 Incorrect and incomplete backtrace . 5
4.0.6 Basic commands . 5
4.0.7 Remember commands . 6

5 Failure number 1 7
5.0.8 Live debug . 7
5.0.9 Breakpoints . 7
5.0.10 Variable value mangling . 9
5.0.11 What you should remember . 10

6 Failure number 2 10
6.0.12 Calling functions from debugger . 11
6.0.13 What you should remember . 11

7 Failure number 3 12
7.0.14 Evaluating macros . 12
7.0.15 Things to remember . 13

8 Failure number 4 13
8.0.16 Overwritten stack . 13
8.0.17 Little bit of magic � assigning commands to breakpoints 14
8.0.18 Important things to remember . 17

9 Failure number 5 17

10 Where from now? 18
10.0.19External links . 18

11 Attachement � source code 19

1

1 Several introduction words (could be skipped)

From time to time somebody asks me about help with debugging or information about how
can something be debugged. Because bugs varies, there are a lot of debugging techniques,
each of them �ts better or worse to the particular type of bugs. However, there is one
debugging technique, or, better � a tool, which could be used on a large variety of problems
and although you can in many cases �nd some special, better �tted tool to debug that
particular type of bug, mastering of this kind-of universal tool will pay o� many times in
future.

As the title already told you, i am writing about gdb. Gdb, GNU Debugger, is a tool
proven by time, it can be used for both post-mortem analysis and from very basic to very
advanced life debugging.

There is a lot of good documentation on gdb, so, why write another one? A lot of people
will point you to the gdb documentation. It is very good, but... it is very long!

When somebody asks me of help, he does not expect me to point him/her to the hundreds
pages of documentation. He usually expects me to either help with his problem, or to show
him how he can solve it by himself.

And because i am lazy and have a limited time, and i do not like to repeat myself too
many times, i decided to write this, aiming to create kind of compact training material for
gdb.

This material is in no way complete in the sense of showing you all the gdb features. It
aims just to be a good starter which should kick you up on your gdb-usage journey. And,
it should be a thing i will point at saying 'you want to explain how to use gdb? Did you go
through <this>? No? Let's go there and ask me again if you still do not know what to do
after you are through it.'

That's it.

2 License

This article is free for any type of use (including printing, redistribution, changing,...),
no matter if commercial or not. Do not remove my name as an author (or original au-
thor in the case you create derived work) and a http link to this article (html form:
http://www.bzz.cz/debug_text.html ,PostScript/PDF: .ps/.pdf). Should you encounter
any bug in this text, please let me know by emailing to "incoming at <domain name of this
site � bzz cz>�

3 Preparations

First, the tour is aimed for those who already has got some experience with programming.
Although it could be of a good value for a skilled newbie, experienced programmer would
probably value this much more. Just to got a clue: you should know what is a core (core-�le),
preprocessor, symbol and pointer before going on with the tour.

You will be confronted with a short C program, with 5 prepared failures. You will go
through the failures and learn how to use gdb from the very basic usage to a reasonably
good usage level.

I have chosen a �eld of pointer errors. I do not want to elaborate on why i have chosen
this. If you are curious, ask me.

3.0.1 Now really the instructions

• this tour has been tested on a Linux i386 box. While it should work just anywhere
gcc/gdb is present, it is recommended to go through it on the same platform if you
got the possibility to do so.

• note that the output from your locally runned gdb can be a bit di�erent to the one
which is copy-pasted here. I will try to point out several possible and signi�cant
di�erences i found when going through the tour on several di�erent boxes

2

• download the example �le (http://www.bzz.cz/data/example.c), assure you has got
several MiBs of free space (for the core�le)

• go to the directory where you downloaded the source code and stay there for the whole
session

• compile the example using something like

gcc -g -o example example.c

• allow creation of core �les by disabling the core �le size limit:

ulimit -c unlimited

Don't forget that this will be valid only in the shell you run the command in, so you
need to repeat this next time you want to continue the tour with a fresh shell

You are ready for the tour now.

4 Failure number 0

4.0.2 First run � learning to read gdb output

Run the compiled example by

./example

You get something like:

$./example

Some message -- alloc done

Some message -- alloc done

Some message -- alloc done

Segmentation fault (core dumped)

$

Program crashed, leaving core �le. Look at the core �le:

$ ls -l core

-rw------- 1 bazil bazil 282624 2008-01-08 00:00 core

Prior to inspecting the core �le, lets have a brief look at the sources �rst:

• code is very short, containing only the main() and the alloc_this() function.

• code is full of errors, of course (so we have something to debug)

• main accepts one parameter � you can choose which bug you want to hit. Specifying
no parameter at all makes you hit bug 0.

• generally speaking, main() does some allocation calls and then simulates several errors
by using invalid pointers, malicious copying, calling free() with invalid arguments etc.

• the alloc_this() func. allocates some space � either on stack or on a heap, possibly
clearing it. It also can simulate a very trivial error (bug 0), we are just getting to it

3

Now, you are ready to do some gdb debugging. Run gdb � i will past a full output
here for now

$ gdb example core

GNU gdb 6.6.90.20070912-debian

Copyright (C) 2007 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "i486-linux-gnu"...

Using host libthread_db library "/lib/i686/cmov/libthread_db.so.1".

warning: Can't read pathname for load map: Input/output error.

Reading symbols from /lib/i686/cmov/libc.so.6...done.

Loaded symbols for /lib/i686/cmov/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

Core was generated by `./example'.

Program terminated with signal 11, Segmentation fault.

#0 0xb7e70c3c in memcpy () from /lib/i686/cmov/libc.so.6

(gdb)

Well, a lot of massages... anything useful? Skipping version and license information you can
see some warning (not important to us) and from the �rst line beginning with Reading it is
useful.

Reading + Loaded informs you what binaries (libraries in this case) are opened by gdb
to get the symbols resolved. Usually you debug a bit more sophisticated program than in
our example so you would see more Reading and Loading messages.

Core was generated by `./example'.

tells you the name of the binary which generated the core�le.
Next line is really important:

Program terminated with signal 11, Segmentation fault.

So, now you know, that the program was terminated because it received SIGSEGV (segment
violation) signal which means it did an invalid memory reference (tried to access memory
without having the privilege to do so).

Useful isn't it?
Next line is one of the possible gdb di�erences you can hit. Maybe you are looking at

these two lines:

#0 0x080485e1 in main (argc=1, argv=0xbf8ffea4) at example.c:47

47 memcpy((char *)p_ok, text, text_size*1000000);

instead of the

#0 0xb7e70c3c in memcpy () from /lib/i686/cmov/libc.so.6

For the sake of training, let's count on that you are seeing the one-line thing.
Now you know that the problem was in calling the memcpy(). So, either the source or

the destination pointer of memcpy was an invalid reference.
So what, are you going to check all the memcpy commands? Yeah, you can do this for

such a small program like this example one, but you cannot do this in normal situation.
You can try some kind of real-time checker, e.g. valgrind, but you need to be able to run
the program � �reproduce the issue�. In the case you can only do the post-mortem analysis
(using the core�le), valgrind cannot help you. You can have a try with a static code analyze
(using e.g. lint) � but, this is a dynamic memory problem so it probably won't be reported
by a static analyze tool.

But wait � we are just running post-mortem in gdb! So, it could do no harm doing three
keystrokes here, right?

4

4.0.3 Backtrace

(gdb) bt

#0 0xb7e70c3c in memcpy () from /lib/i686/cmov/libc.so.6

#1 0x080486d9 in main (argc=1, argv=0xbfaedad4) at example.c:47

Look � the guilty one is the memcpy() call at line 48 of example.c ! Look there:

memcpy((char *)p_ok, TEXT, text_size*1000000);

You do not need any other tool than gdb for such a trivial problem. You can now examine
the code in your favorite editor and �nd out where the problem exactly is. Or you can use
the debugger to inspect things a little bit more.

4.0.4 Debugging information � how to get them in

1. not stripping the binary after the compilation you retain the symbols � aka basic
debugging information (you will see the function names in the backtrace)

2. compiling in debugging information (-g option to the compiler) you are able to see
source �le names, line numbers and even much more (see later)

3. using ulimit -c unlimited you enable the core�le creation

4. calling gdb <binary> <core> you invoke the gdb session

5. typing bt at the gdb prompt usually rewards you with the backtrace which can help
you much when analyzing problem

However, there is one really important thing to be aware of:

4.0.5 Incorrect and incomplete backtrace

• The gdb can show you the backtrace only and only if there are all involved elements
available. What does it means? It means that if you are missing some dynamic library
when you start gdb session, the backtrace will be incomplete. It also means, that when
there is a (lot) di�erent library version loaded in the session than it was at the original
environment the process was running in, you can get incorrect backtrace. This happens
in the case you get the core�le from the "customer" and you are not having the same
system libraries (sometimes, you can have a very di�erent libc � with a di�erent
threading support or so). In that case, you have three options:

1. get the whole set of libraries from the customer (make a list with the complete
paths and send it to the customer. You should be able to get the list of the mapped
libraries and the paths from where they were mapped from the core �le � consult
the gdb manual). After that, consult gdb manual how to tell gdb that it should
load the libraries from the di�erent path (search for solib-absolute-prefix)
or load them manually one by one (again, look-up the manual for that)

2. let the customer run gdb <binary> <core>, type bt and send you the output.
It may require him to install the gdb and unset the core�le limit.

3. live with it

4.0.6 Basic commands

Let's look at this a bit more. You have some more useful tools built-in the debugger.

(gdb) bt

#0 0xb7e70c3c in memcpy () from /lib/i686/cmov/libc.so.6

#1 0x080486d9 in main (argc=1, argv=0xbfaedad4) at example.c:47

5

What are these #0 and #1 exactly? They are stack frames (if you see only one stack frame
in your gdb, no problem, you will practice the frames later). What is a stack frame? It is a
function call entry in the stack. What does it hold? It does hold return address, function
arguments, local variables. What could this be useful for? Ah, comon:

(gdb) frame 1

#1 0x080486e3 in main (argc=1, argv=0xbf9ae194) at example.c:47

47 memcpy((char *)p_ok, text, text_size*1000000);

Now we are at the main() stack frame.

(gdb) info locals

p_ok = (void *) 0x804a008

p_clear = (void *) 0x804a048

p_stack = (void *) 0xbfc0d2c0

switcher = 0

There are the local variables.

(gdb) list

42 p_ok = alloc_this(FALSE, FALSE, FALSE, text_size);

43 p_clear = alloc_this(TRUE, FALSE, FALSE, text_size);

44 p_stack = alloc_this(TRUE, TRUE, FALSE, text_size);

45

46 if (!switcher) {

47 memcpy((char *)p_ok, TEXT, text_size*1000000);

48 }

49

50

51 memcpy((char *)p_ok, TEXT, text_size);

You see just the surroundings of the failed call.
Ok, now look at the arguments:

(gdb) print p_ok

$3 = (void *) 0x804a008

(gdb) print text

$4 = "This is some very clever and not at all short sample text\n"

(gdb) print text_size

$5 = 59

(gdb) print text_size*1000000

$6 = 59000000

So, now you can clearly see, that the call to memcpy requested to copy 59MB from the
text string to the p_ok variable. We cannot say it the error occurred when reading the
59MB from text or when trying to store 59MB to p_ok. It does not matter, the error is in
specifying the enormous size.

We found �rst error and are able to �x it. Fix and recompile it if you want.

4.0.7 Remember commands

• bt

• frame

• info

• list

• print

and the bonus one:

• help

which is an online help system. Remember it is there, you will need it some time.

6

5 Failure number 1

Run the example binary (either you �xed the 0 bug and recompiled or not) with the param-
eter 1:

$./example 1

Some message -- alloc done

Some message -- alloc done

Some message -- alloc done

Segmentation fault (core dumped)

Output looks the same as failure 0. But, open it using gdb. No, i won't copy paste full
input/output here, you should know how to call the gdb by now.

After looking at the backtrace, you should see something like

(gdb) bt

#0 0xb7ec7c35 in memcpy () from /lib/i686/cmov/libc.so.6

#1 0x080485bc in alloc_this (flag_clear=0, flag_onstack=0, flag_fail=1,

size=59) at example.c:19

#2 0x08048746 in main (argc=2, argv=0xbfff62d4) at example.c:54

if your gdb shows you the libc frame or something like

#0 0x08048556 in alloc_this (flag_clear=0, flag_onstack=0, flag_fail=1,

size=59) at example.c:19

#1 0x080486e4 in main (argc=2, argv=0xbfcc17b4) at example.c:54

if it does not. Be it either case, you now have at least two frames. You can try the frame

command to switch between frames and inspect the local variables.
Now, it is time for something new. Exit debugger.

5.0.8 Live debug

Run debugger with this command line:

$ gdb example

So, we omitted the core �le. We are going to run the program inside the debugger!
First, we want to trigger failure 1, not 0, so we need to set the program arguments

somehow.

(gdb) set args 1

(gdb) run

You should end up with the program getting SEGV signal � this is the same state as if you
were inspecting the core�le.

5.0.9 Breakpoints

Okay, anything new?
Yes. You have the possibility to stop the program just before hitting the bug. Looking

at backtrace, you want to break the program somewhere in the alloc_this function, right?
To break the program, the debugger is using a breakpoint. It is just a point in the

instruction �ow, where the program execution is suspended and the debugger comes into
charge again.

So set a breakpoint there:

(gdb) break alloc_this

Breakpoint 1 at 0x804844c: file example.c, line 14.

7

Gdb will insert a breakpoint just at the beginning of the alloc_this function. Now, run
the program again:

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/bazil/actual/gdb/example 1

Breakpoint 1, alloc_this (flag_clear=0, flag_onstack=0, flag_fail=0, size=59)

at example.c:14

14 void * p_bug = NULL;

Would you look in the source�le, you could see we are at the very �rst line of this function.
Now call backtrace and you can see:

#0 alloc_this (flag_clear=0, flag_onstack=0, flag_fail=0, size=59)

at example.c:14

#1 0x0804856e in main (argc=2, argv=0xbfca8284) at example.c:42

Wait, the line numbers are di�erent from the case when we were examining core�le of this
error, aren't they?

Yes, if you look at the �rst backtrace in the failure 1, you can see that it was

main():54 -> alloc_this():19

But now it is

main():42 -> alloc_this():14

Lets have a look at the sources. At the main():54, there is a alloc_this() call which
failed. At main():42, there is �rst alloc_fail() call in the program. Because we speci�ed
to break at each call of alloc_this() and we restarted the program, we are now seeing the
�rst alloc_this() call.

We do not want to inspect this particular alloc_this() call because there is no failure
here.

Lets continue.

(gdb) cont

Continuing.

Some message -- alloc done

Breakpoint 1, alloc_this (flag_clear=1, flag_onstack=0, flag_fail=0,

size=59) at example.c:14

14 void * p_bug = NULL;

(gdb) bt

#0 alloc_this (flag_clear=1, flag_onstack=0, flag_fail=0, size=59)

at example.c:14

#1 0x08048596 in main (argc=2, argv=0xbfca8284) at example.c:43

Now we are at main():43 -> alloc_this():15. Let's do the continue command twice
more and get the alloc_this() call in which we are interested at.

(gdb) bt

#0 alloc_this (flag_clear=0, flag_onstack=0, flag_fail=1, size=59)

at example.c:14

#1 0x0804863a in main (argc=2, argv=0xbfca8284) at example.c:54

We are at the beginning of the failing alloc_this() call. We are going to proceed one
source code line by another. There is a next command:

(gdb) next

16 void * mem_ptr = (flag_onstack) ? alloca(size) : malloc(size);

(gdb) next

19 if (flag_fail) memcpy((char *) p_bug, text, text_size);

8

In fact, you could have used next 2 to do next two times in row.
Now, you are at the failing line. Inspect thing a little using the print command (won't

paste it in here because it is just a repetition from failure 0)
Now, let's say that you have a real program, and you know that function qweasd() is

the failing one. But it is failing only once a thousand calls. You do not want do type cont
one thousand times. In gdb, you have several options depending on what you exactly need,
let's look at several breakpoint commands now:

Ways of setting and managing breakpoints

break alone sets breakpoint at the very location you are at. If you are able to get using
the next commands to a particular situation you want to break at the next time it
happens, use this.

break example.c:19 you set the breakpoint to the speci�ed line. This could be extremely
useful if you want to break in the speci�c branch of if command (note the speci�c
failure once a thousand calls above)

info break shows you the actual breakpoint set. In fact, this earns an example:

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x0804844c in alloc_this at example.c:14

breakpoint already hit 4 times

2 breakpoint keep y 0x0804849c in alloc_this at example.c:19

Num the numeric id of the breakpoint. Does not change (autoincrement)

What shows you where is the breakpoint set

Enb shows you if the breakpoint is currently enabled. If you disable it, if won't be hit until
you enable it again.

Now some commands to manage breakpoints:

disable 1 disables �rst breakpoint. Still in the table, but execution won't be stopped there

delete 1 will delete �rst breakpoint

condition 2 flag_fail==1 make �fth breakpoint hit only when =�ag_fail= parameter
is set to 1

help breakpoints can get you to the next level

Now, play with it a little bit. Erase all breakpoint (or disable them), create new one and
make it hit only when flag_fail is a positive number. Then run the program again and
you would get to the failing case immediately.

Remember the next command? It will just execute the source line you are at and stop
executing before the next line of actual source �le get executed. Consider you are in the
main(), the actual line speci�es an alloc_this call, and you do not want to just jump over
to next line, you want to be able to see what is going on in the alloc_this call. You can
use the step command to step inside the function. Using it would move you to the �rst line
of the alloc_this function.

5.0.10 Variable value mangling

Now, we will do some magic to end-up this chapter.
I suppose you either made the conditional breakpoint as described above or any other

kind of breakpoint with which you can get to the failing case of the alloc_this() function
call.

Run the program and get into the failing case, but do not execute the failing memcpy()

call � just get inside the alloc_this function. Check you have the failing case by inspecting
the flag_fail value by the print command.

9

Now, do this:

(gdb) print flag_fail

$1 = 1

(gdb) set flag_fail = 0

(gdb) print flag_fail

$2 = 0

(gdb) cont

Continuing.

Some message -- alloc done

Program exited with code 01.

(gdb)

Wow, the program passed without crashing � you have �xed it! Okay, you have workarounded
it by manual intervention. But more important is the knowledge that you can change the
variable value, because the main purpose of this is simulating error conditions � so just the
opposite we did. Imagine you are suspecting that some function may cause the failure but
you do not have the exact data which sets some �ags... using this you can set the �ags
easily. Another example is just exploring "what if this was set like this...". Combining

1. using breakpoints to get where you want

2. set the variable to the values you want

3. rerun how many times you want

You can get very good autumn bug harvest.

5.0.11 What you should remember

• how to run and re-run the program inside the debugger (run)

• how to set program cmdline arguments from the debugger (set args ...)

• what is a breakpoint and how to set it (break, break ...)

• you can set breakpoints at function or an exact line (in fact also to the exact address)

• how to manage the breakpoints (info break, disable ..., delete ...)

• continuation commands (next, step, continue)

• that you can mangle the variable values (set <variable>)

• you can do conditional breakpoints and much more � refer to help breakpoints

6 Failure number 2

This failure is a simple one, but you will learn two new things here.
Let's call ./example 2. You get a core�le, run an gdb on it, execute bt full command.
You should see something like this:

(gdb) bt full

#0 0xb7eec4db in strlen () from /lib/i686/cmov/libc.so.6

No symbol table info available.

#1 0x08048775 in main (argc=2, argv=0xbfadeac4) at example.c:67

p_ok = (void *) 0x0

p_clear = (void *) 0x804a048

p_stack = (void *) 0xbfade980

switcher = 2

10

The bug is hit inside the strlen() call. Because the libc is not compiled with debugging
information, you cannot see the arguments. However, you do have full call stack. So look
at the caller.

Looking at local variables of main(), there is nothing suspicious, only the p_ok is pointing
to null. Now look at the guilty line.

(gdb) frame 1

#1 0x08048775 in main (argc=2, argv=0xbfadeac4) at example.c:67

67 fprintf(stderr, "Kernel mem length is %d\n", strlen((char *) 1));

Now, examine the argument value passed to strlen:

(gdb) print (char *) 1

$1 = 0x1 <Address 0x1 out of bounds>

Gotcha! The problem is in accessing invalid memory pointer. This error illustrates the
case when there is a pointer error, but that the pointer is not stored in any variable, so
you are not able to tell something just from the backtrace, you need core�le to inspect the
arguments. (In fact, in this case, just looking at the source line number available from the
full backtrace you can recognize that accessing to pointer address 1 is not correct, but this
was just an illustration)

Now, let's have a look at another handy gdb feature. Stop the debugger, and run it on a
binary (without the core �le). Set commandline argument to 2, breakpoint on line 67, run
the program.

You are now just before the failure.

6.0.12 Calling functions from debugger

Gdb can do something like this:

(gdb) call strlen("text")

$1 = 4

So, try the real argument:

(gdb) call strlen((char *) 1)

Program received signal SIGSEGV, Segmentation fault.

0xb7e614db in strlen () from /lib/i686/cmov/libc.so.6

The program being debugged was signaled while in a function called from GDB.

GDB remains in the frame where the signal was received.

To change this behavior use "set unwindonsignal on"

Evaluation of the expression containing the function (strlen) will be abandoned.

Congratulation, you have hit the bug!
Now look at the backtrace, it gives you a hint that you manipulated the calls a little bit.

6.0.13 What you should remember

• bt full to show the local variables directly with the backtrace (useful if you want
somebody do send you a backtrace output when debugging on a remote site)

• even the full backtrace is not enough sometimes

• you can inspect any expression value, not only the variables

• when running a program, you can call it's functions with arguments you want (does
not work when inspecting core �le)

11

7 Failure number 3

This failure is similar to failure number 2, but although this is the easiest chapter, you still
have possibility to learn something new here.

Now run the bugger with ./example 3

Look at the backtrace:

(gdb) bt

#0 0xb7e348eb in strlen () from /lib/tls/libc.so.6

#1 0xb7e0821e in vfprintf () from /lib/tls/libc.so.6

#2 0xb7e03d13 in cuserid () from /lib/tls/libc.so.6

#3 0xb7e0490f in vfprintf () from /lib/tls/libc.so.6

#4 0xb7e0d3c2 in fprintf () from /lib/tls/libc.so.6

#5 0x080486fb in main (argc=2, argv=0xbfd14c64) at example.c:71

You can see the invalid memory access was done in strlen function. But this is too deep in
the call stack. Looking at our example, the guilty line is 71, which calls fprintf � according
to the call stack.

Look around � select your main() frame, inspect locals and so (frame, info locals,
list)

Because the libc has no symbol table available (try selecting the fprintf frame called
from main() and looking at the local variables), you cannot see the arguments passed to
the fprintf call.

Looking at the source line:

fprintf(stderr, "Kernel mem: %s\n", (char *) MACRO(1));

doesn't tell you that either. Okay, try the gdb print command:

print MACRO(1)

No symbol "MACRO" in current context.

print MACRO

No symbol "MACRO" in current context.

No, it just won't tell you the real fprintf argument value, because it is a macro, and macros
are evaluated during preprocessing phase. In our case it does not matter that much be-
cause we are having a trivial macro and a very simple bug, but what can you do in more
complicated situations?

7.0.14 Evaluating macros

It is possible to instruct the compiler to put even the macro processing information into the
resulting binary. With gcc, you need to recompile the example with:

gcc -g3 -o example example.c

The -g3 option will cause more debugging info than with -g will be compiled in. Refer to
the gcc man page to learn more about it.

Now, rerun ./example 3 and issue gdb example core.
Backtrace is still the same, let's switch to the main() frame.
You have at least two possibilities how to get to the evaluated macro value, passed to

the fprintf call.
First, you can use the gdb command macro:

macro expand MACRO(1)

Second, you can use common print command:

print MACRO(1)

Now you are sure, that the fprintf should print string including string placed at the address
2. This fails, because there is no accessible string stored there.

12

7.0.15 Things to remember

• recompiling with -g3 option will compile in information for evaluating the macros

• macro expand expands the macro in the same way preprocessor does

• print works for evaluating the macro value

8 Failure number 4

8.0.16 Overwritten stack

Failure number 4 is a bit advanced topic. It does not need any extra skills or so, but because
it tries to illustrate something which can be classi�ed as a type of bu�er over�ow and how
it could happen that your program produced an (completely) useless coredump, it needs a
bit understanding of a an (i386) stack.

But even if you are not interested in above (but you should be, because the overwritten
stack case can happen to you possibly under a completely di�erent conditions), you will
learn a bit of a gdb beginner magic here.

However, i must note that depending on a several things, you have a chance of not
overwriting the call stackwhen running on your hardware. You can try to increase the the
number of the for cycles at line 58, but event then, depending on the situation, you may
actually end up with hitting SIGSEGV without overwriting the stack. Just try it. If you
still cannot overwrite the stack, don't be sad, you can learn the promised magic without
overwriting stack.

Enough of talks, run ./example 4

If you haven't forgot to unset the core�le limit, you should get a coredump �le.
Go on, examine it with gdb. After running gdb, your bt output could look like:

(gdb) bt

#0 0x20656c70 in ?? ()

#1 0x74786574 in ?? ()

#2 0x0804000a in ?? ()

#3 0x0000003b in ?? ()

#4 0x0000003b in ?? ()

#5 0xbfb1aa80 in ?? ()

#6 0x08049a10 in ?? ()

#7 0xbfb1aa58 in ?? ()

#8 0x080483f0 in _init ()

#9 0xb7e3d050 in __libc_start_main () from /lib/i686/cmov/libc.so.6

#10 0x080484e1 in _start ()

Hmm, interesting, isn't it? Where oh where is my main() frame? Yes, it is de�nitely
interesting, but... useless. You can see something like this (if i omit some signi�cant library
di�erence between the analyzed machine and the machine you are running gdb on) if the
backtrace gets overwritten.

Let's show how that happened.
Start gdb, set commandline argument to 4, and before running the program, set some

breakpoints � e.g. �rst one to main(), second to alloc_this().
Get ready some editor/viewer on the example source �le.
Now, run it and continue several times after you get the SIGSEGV error.
You should see something like this:

(gdb) r

Starting program: /home/bazil/actual/gdb/example 4

Breakpoint 1, main (argc=2, argv=0xbfd05524) at example.c:32

32 int switcher = 0;

(gdb) c

Continuing.

13

Breakpoint 2, alloc_this (flag_clear=0, flag_onstack=0, flag_fail=0, size=59)

at example.c:14

14 void * p_bug = NULL;

(gdb) c

Continuing.

Some message -- alloc done

Breakpoint 2, alloc_this (flag_clear=1, flag_onstack=0, flag_fail=0, size=59)

at example.c:14

14 void * p_bug = NULL;

(gdb) c

Continuing.

Some message -- alloc done

Breakpoint 2, alloc_this (flag_clear=1, flag_onstack=1, flag_fail=0, size=59)

at example.c:14

14 void * p_bug = NULL;

(gdb) c

Continuing.

Some message -- alloc done

Program received signal SIGSEGV, Segmentation fault.

0x20656c70 in ?? ()

(gdb)

You got to the same unusable state as with the core �le. Try bt, you will see the mess.
What now? Look at the output above. You can say that at least some of the alloc_this()

calls went �ne. Well, you can see it was the last one in the source �le, but in the real sit-
uation, it could be the x'th one (neither �rst, nor last of the alloc_this() calls). You
probably want to inspect the situation on the last successful alloc_this call.

Let's try some promised beginner magic now.

Facts:

1. you have the alloc_this() breakpoint set

2. you know that after some alloc_this(), there is a failure which overwrites the stack

Needs:

1. you want to inspect the situation at the last successful enter on alloc_this()

2. you do not want to interrupt on each alloc_this() call

Okay. To be able to inspect the situation at the last successful call to alloc_this(), you
need to identify that call �rst.

Let's go the fastest way.
You can specify a commands to be executed on each breakpoint hit.
So.
So what?
It's easy, try to think a little bit before reading further.

8.0.17 Little bit of magic � assigning commands to breakpoints

Let's suppose the alloc_this() breakpoint is a number 2. If you do something like:

(gdb) commands 2

Type commands for when breakpoint 2 is hit, one per line.

End with a line saying just "end".

>bt

>continue

>end

14

It would cause that on each breakpoint 2 hit, backtrace would be printed and then continue

command would be executed.
So, you will end up with the same overwritten stack, but the last backtrace will identify

the position in the source �le where the problem had arisen (at some other cases � like the
problem arising on a call executed from cycle � you can use other commands to be executed
as well � so you can display e.g. the cycle counter to identify the exact cycle run etc.)

Let's run it, possibly switching o� the breakpoint 1 (in main()).
The end of gdb output should look like:

Breakpoint 2, alloc_this (flag_clear=1, flag_onstack=1, flag_fail=0, size=59)

at example.c:14

14 void * p_bug = NULL;

#0 alloc_this (flag_clear=1, flag_onstack=1, flag_fail=0, size=59)

at example.c:14

#1 0x08048678 in main (argc=2, argv=0xbff16f34) at example.c:44

Some message -- alloc done

Program received signal SIGSEGV, Segmentation fault.

0x20656c70 in ?? ()

(gdb)

Now you see, that the last successful alloc_this() call was from example.c, line 44.
Let's put a breakpoint on that line, disable the alloc_this() breakpoint and re-run the

program.
You can step in the alloc_this() function, but to speed things up, lets go over by next.

Repeat the next as long as you get to the failure:

Breakpoint 3, main (argc=2, argv=0xbfb27344) at example.c:44

44 p_stack = alloc_this(TRUE, TRUE, FALSE, text_size);

(gdb) n

Some message -- alloc done

46 if (!switcher) {

(gdb) n

51 memcpy((char *)p_ok, text, text_size);

(gdb) n

52 memcpy((char *)p_clear, text, text_size);

(gdb) n

54 if (switcher==1) (void) alloc_this(FALSE, FALSE, TRUE, text_size);

(gdb) n

56 if (switcher==4) {

(gdb) n

58 for (x=0; x<5; x++) {

(gdb) n

59 memcpy((char *)(p_stack+x*text_size), text, text_size);

(gdb) n

58 for (x=0; x<5; x++) {

(gdb) n

59 memcpy((char *)(p_stack+x*text_size), text, text_size);

(gdb) n

Program received signal SIGSEGV, Segmentation fault.

0x20656c70 in ?? ()

The last memcpy command is the guilty one.
Fine, it is identi�ed, now we are going to look at it.
Delete all breakpoints and set a new one at line 59.
Set a display of some variables like:

(gdb) display x

15

(gdb) display p_stack

(gdb) display text

(gdb) display text_size

(gdb) display p_stack+x*text_size

Rerun the binary.
Now, for a last time in this failure, let the program die. Use cont commands. You will

see something like this, only the pointer adresses will be di�erent:

Breakpoint 4, main (argc=2, argv=0xbfd10534) at example.c:59

59 memcpy((char *)(p_stack+x*text_size), text, text_size);

5: p_stack + x * text_size = (void *) 0xbfd103f0

4: text_size = 59

3: text = "This is some very clever and not at all short sample text\n"

2: p_stack = (void *) 0xbfd103f0

1: x = 0

(gdb) c

Continuing.

Breakpoint 4, main (argc=2, argv=0xbfd10534) at example.c:59

59 memcpy((char *)(p_stack+x*text_size), text, text_size);

5: p_stack + x * text_size = (void *) 0xbfd1042b

4: text_size = 59

3: text = "This is some very clever and not at all short sample text\n"

2: p_stack = (void *) 0xbfd103f0

1: x = 1

(gdb) c

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0x20656c70 in ?? ()

Looking at the memcpy line and other facts, we can say:

• the program died after copying the text to the 0xbfd1042b address

• the program died due to a SIGSEGV which is invalid access

• program tried to access some data which it has no privilege to access

• the stack is completely useless

The SIGSEGV you are seeing was not hit by the memcpy directly. In fact, the memcpy function
wrote the text over some stack data and when the program was trying to access (or maybe
execute, who knows) another data just after the memcpy �nished, it did invalid memory
access so it received the SIGSEGV.

Now, the question is, how come that the stack (or part of it) got overwritten?
Originally, i wanted to go through the stack addresses, compare it to p_stack pointer and
do some pointer math to show you what happened, but given the fact it is long enough now
and your patience is probably lost by now, i will give you the start and you can inspect
yourself. So:

• the problem is, that the p_stack is pointing to stack, not to heap. When the alloc_this()
function is executed, the space for p_stack is allocated on the stack because there is
an alloca() function used instead of a malloc(). You can generally use alloca()

for quick allocation but you have to remember what you are doing. This code is an
example of not remembering that.

• the p_stack variable value is in fact never valid, because the value is stored here after
the execution of alloc_this() ends. At that time, all the stack space occupied by
alloc_this() local storage is considered free. So, the p_stack points to

16

� memory which can be accessed by the program without restriction

� memory which lies on the program stack

� memory which should never be accessed because semantically the p_stack pointer
is invalid

• from now, it is only the matter of time when the real problem arises. It could be
after some time (the p_stack pointer can be passed to any other function call which
can overwrite it's own data, return pointer etc...) or just immediately like it is in the
example: the for cycle calling memcpy is of course an error (because it is writing to the
stack) but there is even a cumulative error (it is writing more space than was allocated
� a check is missing)

One little help to get to the stack address: info frame will show you the address of the
frame on the stack. In my case (after re-running the binary, addresses are a bit di�erent):

(gdb) info frame

Stack level 0, frame at 0xbfd6a4f0:

eip = 0x8048715 in main (example.c:59); saved eip 0xb7db9050

source language c.

Arglist at 0xbfd6a4e8, args: argc=2, argv=0xbfd6a584

Locals at 0xbfd6a4e8, Previous frame's sp at 0xbfd6a4e4

Saved registers:

ebp at 0xbfd6a4e8, eip at 0xbfd6a4ec

(gdb) display

5: p_stack + x * text_size = (void *) 0xbfd6a47b

4: text_size = 59

3: text = "This is some very clever and not at all short sample text\n"

2: p_stack = (void *) 0xbfd6a440

1: x = 1

(gdb) print p_ok

$1 = (void *) 0x804a008

So you see that memory allocated on heap (p_ok) is at 0x804a008, the stack frame 0 begins
at 0xbfd6a4f0 and the p_stack points to 0xbfd6a440 (which is much closer to stack frame
0 than to the heap). The address which is the text going to be copied now is 0xbfd6a47b,
which is even closer to the frame 0. Rewriting of something important on the stack is only
the matter of time...

8.0.18 Important things to remember

• commands can be assigned to breakpoints

• display sets items to be displayed after each command executed (if visible in current
scope)

• info frame shows frame address on the stack

• alloca() allocates on stack

• after the stack is overwritten, a lot of strange things could happen, this was only one
simple example

9 Failure number 5

Run the example with argument 5 to get the last prepared failure.
It should fail on a SIGSEGV again. Your backtrace could look like

#0 0xb7eabaf6 in free () from /lib/tls/libc.so.6

#1 0x08048712 in main (argc=2, argv=0xbfa6a9b4) at example.c:75

17

This failure does not tell you anything brand new (well, only a bit), it is mainly meant as
an �nal exercise. If you remember the previous failure, just looking at the source code will
tell you where is the problem now. But do not hurry, take the exercise �rst.

First, inspect the situation a bit. Look at the frame, locals, print the source code.
Then, let's say you decided you need to see what happens live.
Exit debugger, run it with binary only.
Set proper arguments.
Wait, can we put the breakpoint inside the dynamic library? Try it:

(gdb) break free

Function "free" not defined.

Make breakpoint pending on future shared library load? (y or [n])

You may decide to make a pending breakpoint, or set break for main() and just when
program starts and hits breakpoint at main() you may set the breakpoint at free().

Now, run the program, and inspect each free() call a bit. Let's say you are paranoid,
so set the frame to your main() at each free() call and look at the address to be freed.

When you get to the failing free() call, switch to the main() frame, look at the p_stack
value and compare with stack frame address. You see the problem is that this pointer was
not allocated by malloc() or any of its wrappers, because it is a pointer somewhere to the
stack. Because it was not allocated via malloc, it cannot be freed.

That's all of the prepared failures i have got for you. However, don't miss the next
chapter.

10 Where from now?

Let me give you one little advice: you can learn how to use gdb best by trying to use
it. Where can you found real problems if you are not full-time developer and not solving
customer problems?

First place is your own programs. Do not take care that they are (usually) just a small
applications, just debug it if you hit the bug.

Second place to look are the real bugs � look at some opensource software (be it GNU or
not) � there are lot of various sized applications with a lot of bugs reported. Pick
some app and try to debug a known reported problem. By solving the problem you
will help users of the application and you get some practice. On the other hand, you
can start with already �xed problem, because there is usually no problem obtaining
the old revision with the bug not yet �xed.

10.0.19 External links

If you are looking for some additional information (and you should be because this article
is just to start you up), consider:

• internal gdb help system

• gdb documentation on gdb homesite -- http://sourceware.org/gdb/documentation/

• gdb quickref � try your favorite search engine, original site here or local copy here:
http://www.bzz.cz/mirror/gdbref.pdf

Final words There is always a lot more what can be written about gdb or debugging in
general, but i hope this short (compared to the doc) text helped you with learning gdb.
Farewell!

�
Jan 'bazil ' Otte, 2007
should you need to contact me, write to "incoming at <domain name � bzz cz>�.

18

11 Attachement � source code

You should be able to get this online at http://www.bzz.cz/data/example.c

#include <stdio.h>

#include <stdlib.h>

#include <alloca.h>

#include <string.h>

#define FALSE 0

#define TRUE 1

#define MACRO(x) (x+1)

int text_size = 0;

char text[] = "This is some very clever and not at all short sample text\n";

void * alloc_this(int flag_clear, int flag_onstack, int flag_fail, size_t size) {

/* little allocation function, can alloc on heap and on stack,

clear the memory and simulate an error (copy to NULL) */

void * p_bug = NULL;

/* allocate memory */

void * mem_ptr = (flag_onstack) ? alloca(size) : malloc(size);

/* simple failure */

if (flag_fail) memcpy((char *) p_bug, text, text_size);

/* clear memory if flag set and memory alloc succeeded */

if (mem_ptr && flag_clear) mem_ptr = memset(mem_ptr, 0, size);

/* just a clue -- you can break here */

printf("Some message -- alloc done\n");

return mem_ptr;

}

int main(int argc, char ** argv) {

void * p_ok, * p_clear, * p_stack;

int switcher = 0;

text_size = strlen(text) + 1;

/* get the switcher if any */

if (argc>1) {

switcher=atoi(argv[1]);

}

/* allocate it */

p_ok = alloc_this(FALSE, FALSE, FALSE, text_size);

p_clear = alloc_this(TRUE, FALSE, FALSE, text_size);

p_stack = alloc_this(TRUE, TRUE, FALSE, text_size);

if (!switcher) {

memcpy((char *)p_ok, text, text_size*1000000);

}

memcpy((char *)p_ok, text, text_size);

memcpy((char *)p_clear, text, text_size);

19

if (switcher==1) (void) alloc_this(FALSE, FALSE, TRUE, text_size);

if (switcher==4) {

int x;

for (x=0; x<5; x++) {

memcpy((char *)(p_stack+x*text_size), text, text_size);

}

}

free(p_ok); p_ok = NULL;

free(p_clear);

if (switcher == 2) {

fprintf(stderr, "Kernel mem length is %d\n", strlen((char *) 1));

}

if (switcher == 3) {

fprintf(stderr, "Kernel mem: %s\n", (char *) MACRO(1));

}

if (switcher>4) {

if (p_stack) free(p_stack);

}

return switcher;

}

20

	Several introduction words (could be skipped)
	License
	Preparations
	Now really the instructions

	Failure number 0
	First run -- learning to read gdb output
	Backtrace
	Debugging information -- how to get them in
	Incorrect and incomplete backtrace
	Basic commands
	Remember commands

	Failure number 1
	Live debug
	Breakpoints
	Variable value mangling
	What you should remember

	Failure number 2
	Calling functions from debugger
	What you should remember

	Failure number 3
	Evaluating macros
	Things to remember

	Failure number 4
	Overwritten stack
	Little bit of magic -- assigning commands to breakpoints
	Important things to remember

	Failure number 5
	Where from now?
	External links

	Attachement -- source code

